Cysteine deleted protegrin-1 (CDP-1): anti-bacterial activity, outer-membrane disruption and selectivity.
نویسندگان
چکیده
BACKGROUND Protegin-1 (PG-1: RGGRLCYCRRRFCVCVGR-amide) assumes a rigid β-hairpin like structure that is stabilized by two disulfide bridges between Cys6-Cys15 and Cys8-Cys13. Previous studies, employing linear analogs of PG-1, with Cys to Ala mutations or modified Cys, have demonstrated that the disulfide bridges are critical for the broad spectrum and salt resistant antimicrobial activity of PG-1. METHODS In order to understand structural and functional roles of disulfide bonds in protegrins, we have synthesized a Cys deleted variant of PG-1 or CDP-1, RGGRLYRRRFVVGR-amide, and two of its analogs, RR11, RLYRRRFVVGR-amide, and LR10, LYRRRFVVGR-amide, containing deletion of residues at the N-terminus. These peptides have been characterized for bactericidal activity and mode of action in lipopolysaccharide (LPS) using optical spectroscopy, ITC and NMR. RESULTS Antibacterial activity, against Gram-negative and Gram-positive strains, of the three peptides follows the order: CDP-1>RR11>LR10. LR10 displays only limited activity toward Gram-negative strains. CDP-1 demonstrates efficient membrane permeabilization and high-affinity interactions with LPS. CDP-1 and RR11 both assume β-hairpin like compact structures in complex with LPS, whereas LR10 adopts an extended conformation in LPS. In zwitterionic DPC micelles CDP-1 and the truncated analog peptides do not adopt folded conformations. MAJOR CONCLUSIONS Despite the absence of stabilizing disulfide bridges CDP-1 shows broad-spectrum antibacterial activity and assumes β-hairpin like structure in complex with LPS. The β-hairpin structure may be essential for outer membrane permeabilization and cell killing.
منابع مشابه
Interaction of antimicrobial peptide protegrin with biomembranes.
The antimicrobial peptide protegrin-1 (PG-1) interacts with membranes in a manner that strongly depends on membrane lipid composition. In this research we use an approach representing the outer layers of bacterial and red blood cell membranes with lipid monolayers and using a combination of insertion assay, epifluorescence microscopy, and surface x-ray scattering to gain a better understanding ...
متن کاملMechanism of supported membrane disruption by antimicrobial peptide protegrin-1.
While pore formation has been suggested as an important step in the membrane disruption process induced by antimicrobial peptides, membrane pore formation has never been directly visualized. We report on the dynamics of membrane disruption by antimicrobial peptide protegrin-1 (PG-1) on dimyristoyl-sn-glycero-phosphocholine-supported bilayer patches obtained via atomic force microscopy. The acti...
متن کاملStructures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance.
The structural basis for the gram selectivity of two disulfide-bonded β-hairpin antimicrobial peptides (AMPs) is investigated using solid-state nuclear magnetic resonance (NMR) spectroscopy. The hexa-arginine PG-1 exhibits potent activities against both gram-positive and gram-negative bacteria, while a mutant of PG-1 with only three cationic residues maintains gram-positive activity but is 30-f...
متن کاملAntitumor activity of antimicrobial peptides against U937 histiocytic cell line.
We investigated cytotoxic activity of antimicrobial peptides of different origin (both naturally occurring and synthetic), structure and known mechanisms of action against human histiocytic lymphoma cell line U937. The strongest cytotoxic activity against U937 cell line was shown by Pexiganan MSI-78, followed by Citropin 1.1, Protegrin 1 and a synthetic lipopeptide, N-α-palmitoyl-L-lysyl-L-lysi...
متن کاملConformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy.
Disulfide-bonded beta-hairpin structures are common among antimicrobial peptides. Disulfide bonds are known to be important for antimicrobial activity, but the underlying structural reason is not well understood. We have investigated the membrane-bound structure of a disulfide-deleted analogue of the antimicrobial peptide protegrin-1, in which the four Cys residues were replaced by Ala. The sec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1840 10 شماره
صفحات -
تاریخ انتشار 2014